Introduction to Learning

Associative learning Event-event learning (Pavlovian/classical conditioning)

- Behavior-event learning (instrumental/ operant conditioning)
- Both are well-developed experimentally and theoretically
- Note confusion in usages as *procedures*, *outcomes*, and *processes*

Learning theory

- What are the conditions of learning?
- What are the contents of learning?
- What is the relation of learning to behavior?

Important variables

- Time
 - Inter-stimulus interval (ISI)
 - Inter-trial interval (ITI)
 - Ratio of ITI/ISI
 - Condition for learning or content of learning?

Many theories

- Most common & successful are contiguity theories: Learning-induced variations in processing of USs and CSs
 - Reinforcement theories: USs change effectiveness; unpredicted USs more effective
 - Attention theories: CSs change effectiveness; good (or poor) predictors processed better

Learning-induced variations in processing of USs

- Rescorla-Wagner model: $\Delta V_A = \alpha_A \beta_1 (\lambda_1 V_{\Sigma A...X})$
 - Reinforcing event is error signal (discrepancy between expected and actual value of US)
 - · If US underexpected (error>0) learning is excitatory
 - If US overexpected (error < 0) learning is inhibitory
 - Thus, excitation & inhibition tied to change/contrast rather than
 absolute events
 - · Symmetry of conditions for, and content of, excitation and inhibition
 - Error signal is aggregate error (all sources)
 - Rate parameters for CS and US (constants) determine how fast things happen, and sometimes how big the differences are but otherwise not typically critical

Learning-induced variations in processing of USs

- Rescorla-Wagner model: $\Delta V_A = \alpha_A \beta_1 (\lambda_1 V_{\Sigma A...X})$
 - Became a standard in behavioral psychology because it did a great job of modeling a large number of odd (counterintuitive) findings as well as obvious ones, with minimum complexity of representation and computation (will demonstrate)
 - later became a standard in neuroscience because it is easy to implement and because midbrain dopamine neurons seemed to show requisite properties to be R-W teaching signals (aggregate prediction error)
 - · delivery of unexpected rewards ("positive prediction error") produces rate increases
 - omission of expected rewards ("negative prediction error") produces rate decreases
 - as reward becomes expected on the basis of a cue or response, the increases come under control of that cue/response, and fail to occur to reward delivery itself
 - (will say more on this later, too)

Learning-induced variations in processing of USs

- Rescorla-Wagner model: $\Delta V_A = \alpha_A \beta_1 (\lambda_1 V_{\Sigma A...X})$
 - Apply to blocking
 - Apply to conditioned inhibition procedure (A+, AX-)
 - Apply to overexpectation (A+, B+ | ABX+| X?)
 - Apply to contingency (AC+, C-) (AC+, C+) (AC-, C+)
 - Not the last word; many intolerable flaws and wrong predictions
 - Symmetry of excitation and inhibition elusive (e.g., extinction of inhibition and excitation)
 - · Aggregate error may not be the whole story; constrained error terms
 - Retrieval effects
 - Evidence for more detailed representation of world ("model-based learning", e.g., Rescorla, 1973)
 - · No role for changes in CS processing (attention)

More complex theories

- Contingency theories: Learn individual event relations and compute contingencies
 - Learning based (frequentist & Bayesian)
 - Performance-based (Comparator theory)
- Learn everything and compute whatever needed

Non-arbitrary nature of events

- · Identity of associates matter
 - Engage different neural and behavioral systems for learning
 - Both CS and US individually, and their combination
 - Garcia example

